If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+12y-4=0
a = 1; b = 12; c = -4;
Δ = b2-4ac
Δ = 122-4·1·(-4)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{10}}{2*1}=\frac{-12-4\sqrt{10}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{10}}{2*1}=\frac{-12+4\sqrt{10}}{2} $
| ½(2-4x)+2x=13 | | 9-(5x+1)=-13x | | 103x-6=-103-103 | | 9x-25=3x-5+4x+12 | | –20=–4x–6x | | X2-8x=-7 | | -2=8–2w | | 8m+5=-11 | | 2a–3=a+1 | | 18=2(3-2v)-3(1-3v) | | 4x+1-2x=5 | | -6x-6=-103x-103 | | 2v-8(v+7)=7(7-3v) | | 3w-5+2w=15+4w-5 | | X+8x-x-1=5x+(5)2 | | -x-6=6+2x | | –20=–4x—6x | | 1-n=-(n+1)+2 | | -(c-8)=-4c-8 | | 3t+1/10-2t-3/7=t+3/8+3t-1/4 | | -6x-6=-103-103 | | 20k+32=2k2 | | -336=-7(-1-7k) | | 2(n-7)-5=2n-27 | | m+4=-5-8m | | (-4/7)=(-2f/3) | | -11v-7=4 | | (-4/7)=(2f/3)- | | 3x+10+6x-2=180 | | -6(1-3x)+7=109 | | 6y-4=2y-15 | | 0.4(d-6)=0.3+0.5+0.1-0.1 |